# Understanding Random Forests

2017-06-02

Say our dataset has 1,000 rows and 30 columns. There are two levels of randomness in this algorithm:

• At row level: Each of these decision trees gets a random sample of the training data (say 10%) i.e. each of these trees will be trained independently on 100 randomly chosen rows out of 1,000 rows of data. Keep in mind that each of these decision trees is getting trained on 100 randomly chosen rows from the dataset i.e they are different from each other in terms of predictions.
• At column level: The second level of randomness is introduced at the column level. Not all the columns are passed into training each of the decision trees. Say we want only 10% of columns to be sent to each tree. This means a randomly selected 3 column will be sent to each tree. So for the first decision tree, may be column C1, C2 and C4 were chosen. The next DT will have C4, C5, C10 as chosen columns and so on.

This  is a nice article and includes cases when not to use random forests.

## Bayesian Average

2017-06-21

Jelte Hoekstra has a fun post applying the Bayesian average to board game ratings: Maybe you want to explore the best boardgames but instead you find the top 100 filled with 10/10 scores. Experience many such false positives and you will lose faith in the rating system. Let’s be clear this isn’t exactly incidental either: […]

## Calculating Relative Risk In T-SQL

2017-06-20

Mala Mahadevan explains how to calculate relative risk using T-SQL: In this post we will explore a common statistical term – Relative Risk, otherwise called Risk Factor. Relative Risk is a term that is important to understand when you are doing comparative studies of two groups that are different in some specific way. The most […]