Fitness In Modeling

Leila Etaati notes the Scylla and Charybdis of models:

However, in the most machine learning experiences, we will face two risks :Over fitting and under fitting.
I will explain these two concepts via an example below.
imagine that we have collected information about the number of coffees that have been purchased in a café from 8am to 5pm.

Overfitting tends to be a bigger problem in my experience, but they’re both dangerous.

Related Posts

Bayesian Average

Jelte Hoekstra has a fun post applying the Bayesian average to board game ratings: Maybe you want to explore the best boardgames but instead you find the top 100 filled with 10/10 scores. Experience many such false positives and you will lose faith in the rating system. Let’s be clear this isn’t exactly incidental either: […]

Read More

Calculating Relative Risk In T-SQL

Mala Mahadevan explains how to calculate relative risk using T-SQL: In this post we will explore a common statistical term – Relative Risk, otherwise called Risk Factor. Relative Risk is a term that is important to understand when you are doing comparative studies of two groups that are different in some specific way. The most […]

Read More

Categories

April 2017
MTWTFSS
« Mar May »
 12
3456789
10111213141516
17181920212223
24252627282930