Using OLS To Fit Rational Functions

Srini Kumar and Bob Horton show how to use the lm function to fit functions using the Pade Approximation:

Now we have a form that lm can work with. We just need to specify a set of inputs that are powers of x (as in a traditional polynomial fit), and a set of inputs that are y times powers of x. This may seem like a strange thing to do, because we are making a model where we would need to know the value of y in order to predict y. But the trick here is that we will not try to use the fitted model to predict anything; we will just take the coefficients out and rearrange them in a function. The fit_pade function below takes a dataframe with x and y values, fits an lm model, and returns a function of x that uses the coefficents from the model to predict y:

The lm function does more than just fit straight lines.

Related Posts


Hadley Wickham announces dbplyr version 1.1.0: Since you’ve read this far, I also wanted to touch on RStudio’s vision for databases. Many analysts have most of their data in databases, and making it as easy as possible to get data out of the database and into R makes a huge difference. Thanks to the community, […]

Read More

Neural Nets On Spark

Nisha Muktewar and Seth Hendrickson show how to use Deeplearning4j to build deep learning models on Hadoop and Spark: Modern convolutional networks can have several hundred million parameters. One of the top-performing neural networks in the Large Scale Visual Recognition Challenge (also known as “ImageNet”), has 140 million parameters to train! These networks not only […]

Read More


April 2017
« Mar May »