Using OLS To Fit Rational Functions

Srini Kumar and Bob Horton show how to use the lm function to fit functions using the Pade Approximation:

Now we have a form that lm can work with. We just need to specify a set of inputs that are powers of x (as in a traditional polynomial fit), and a set of inputs that are y times powers of x. This may seem like a strange thing to do, because we are making a model where we would need to know the value of y in order to predict y. But the trick here is that we will not try to use the fitted model to predict anything; we will just take the coefficients out and rearrange them in a function. The fit_pade function below takes a dataframe with x and y values, fits an lm model, and returns a function of x that uses the coefficents from the model to predict y:

The lm function does more than just fit straight lines.

Related Posts

Logistic Regression In R

Steph Locke has a presentation on performing logistic regression using R: Logistic regressions are a great tool for predicting outcomes that are categorical. They use a transformation function based on probability to perform a linear regression. This makes them easy to interpret and implement in other systems. Logistic regressions can be used to perform a classification […]

Read More

Feature Improvements In Microsoft R Server 9.1

David Smith gives us a nice roundup of feature improvements in Microsoft R Server 9.1: Interoperability between Microsoft R Server and sparklyr. You can now use RStudio’s sparklyr package in tandem with Microsoft R Server in a single Spark session New machine learning models in Hadoop and Spark. The new machine learning functions introduced with Version 9.0 […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

Categories

April 2017
MTWTFSS
« Mar  
 12
3456789
10111213141516
17181920212223
24252627282930