CAST and CONVERT Make Expressions Nullable

Daniel Hutmacher points out a side effect of using CAST() and CONVERT():

Suppose we want to set up a view in the new solution that mirrors the names and definitions of the old table, so the legacy integration can use that view going forward:

CREATE OR ALTER VIEW new.the_table_like_before
SELECT CAST(id AS varchar(32)) AS id,
CAST([row] AS int) AS [row],
CAST(date_loaded AS datetime) AS dt
FROM new.the_table;

Now, if you check out the resulting datatypes of the view, you’ll notice that all the columns are marked nullable, even though they’re all based on non-nullable columns, so the values in the view could never be null.

Read on for a couple possible solutions.

Using CHOOSE() in SQL Server

Bert Wagner explains the CHOOSE() function:

While I know I don’t utilize most of the features available in SQL Server, I like to think I’m at least aware that those features exist.

This week I found a blind-spot in my assumption however. Even though it shipped in SQL Server 2012, the SQL Server CHOOSE function is a feature that I think I’m seeing for the first time this past week.

CHOOSE() and IIF() were functions ported over to make it easier for Access and Excel users to write code. I tend to avoid them because there are typically better idiomatic constructs (like CASE) in SQL Server.

Deleting From OPENQUERY

Jack Vamvas shows how you can delete data from a remote server using OPENQUERY:

How can I DELETE using OPENQUERY?   Normally for a SELECT from OPENQUERY , I’ll do something like :


Can a similar method be used but for DELETE?

Click through for the answer.

Debugging a Pivot

Ed Elliott takes us through problems with the PIVOT statement:

If you have a PIVOT query and it isn’t returning the data you expect, what can you do to troubleshoot it? The thing to do is to break it down into the constituent parts. First, lets take a look at a query and see what we can do to help.

Click through for potential problems and their solutions.

Modifying XML in T-SQL

Max Vernon takes us through the .modify function:

Determining the property syntax when modifying XML values in SQL Server can be time consuming if you don’t work with XML regularly. SQL Server includes a very flexible XML subsystem, called XML_DML, or XML Data Manipulation Language. XML_DML can be used to easily and effectively update XML values in an xml-typed column or variable. This question on dba.stackexchange.comasked about using the .modify function to change the value of an element, which in turn prompted this post.

Read on for a number of examples.

Testing Maximum Rows in Table Value Constructors

Solomon Rutzky dives into how big a table value constructor can be in terms of rows:

On 2019-05-08, a helpful individual, Michael B, commented on my answer saying that the 1000-row limit only existed when using a TVC as the VALUES clause of an INSERT statement. And, that there was no limit when using a TVC as a derived table.

Could this be true?

Solomon finds out. Click through and so can you.

T-SQL Tips Regarding Subqueries

Itzik Ben-Gan provides quality information on working with subqueries in SQL Server:

In this plan you see a Nested Loops (Left Semi Join) operator, with a scan of the clustered index on Customers as the outer input and a seek in the index on the customerid column in the Orders as the inner input. You also see an outer reference (correlated parameter) based on the custid column in Customers, and the seek predicate Orders.customerid = Customers.custid.

So why are you getting the plan in Figure 1 and not the one in Figure 2? If you haven’t figured it out yet, look closely at the definitions of both tables—specifically the column names—and at the column names used in the query. You will notice that the Customers table holds customer IDs in a column called custid, and that the Orders table holds customer IDs in a column called customerid. However, the code uses custid in both the outer and inner queries. 

Itzik covers three specific scenarios, all of which can cause trouble to database developers who haven’t been burned yet. And sometimes even those who have.

Breaking Up Queries with UNION ALL

Bert Wagner takes us through a scenario where it can be faster to combine queries with UNION ALL rather than using IN:

Even though this query reads the whole clustered index to get the Benefactor rows, the total number of logical reads is still smaller than the seek/key lookup pattern seen in the combined query with IN(). This UNION ALL version gives SQL Server the ability to build a hybrid execution plan, combining two different techniques to generate a plan with fewer overall reads.

Click through for the example.

Window Functions with IGNORE NULLs

Kevin Feasel



Lukas Eder walks us through a bit of functionality I wish we had in SQL Server:

On each row, the VALUE column should either contain the actual value, or the “last_value” preceding the current row, ignoring all the nulls. Note that I specifically wrote this requirement using specific English language. We can now translate that sentence directly to SQL:

last_value (t.value) ignore nulls over (order by d.value_date)

Since we have added an ORDER BY clause to the window function, the default frame RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW applies, which colloquially means “all the preceding rows”. (Technically, that’s not accurate. It means all rows with values less than or equal to the value of the current row – see Kim Berg Hansen’s comment)

Only a few database products have this and SQL Server is not one of them.

The Importance of Aliasing in Subqueries

Gail Shaw explains an unexpected result when writing a statement with a subquery:

The column name in the temp table is missing an I, probably just a typo, but it has some rather pronounced effects.

The obvious next question is why the select with the subquery in it didn’t fail, after all, the query asks for ClientID from #TempClients, and there’s no such column. However there is a ClientID column available in that query, and it’s in the Orders table. And that’s a valid column for the subquery, because column binding order, when we have subqueries, is first to tables within the subquery, and then, if no match is found, to tables in the outer query.

I know that the first time I experienced this, I thought it was a bug as well. But no, it’s by design and Gail explains why.


August 2019
« Jul