Hadoop Name Node Capacity Planning

Mamta Chawla has some rules of thumb for sizing your Hadoop name node:

Both name node servers should have highly reliable storage for their namespace storage and edit-log journaling. That’s why — contrary to the recommended JBOD for data nodes — RAID is recommended for name nodes.

Master servers should have at least four redundant storage volumes — some local and some networked — but each can be relatively small (typically 1TB).

It is easy to determine the memory needed for both name node and secondary name node. The memory needed by name node to manage the HDFS cluster metadata in memory and the memory needed for the OS must be added together. Typically, the memory needed by the secondary name node should be identical to the name node.

Click through for some specific recommendations.

Related Posts

Kafka Streams Basics

Anuj Saxena walks through Kafka Streams and provides a quick example: The features provided by Kafka Streams: Highly scalable, elastic, distributed, and fault-tolerant application. Stateful and stateless processing. Event-time processing with windowing, joins, and aggregations. We can use the already-defined most common transformation operation using Kafka Streams DSL or the lower-level processor API, which allow us […]

Read More

R For Apache Impala

Ian Cook describes implyr, an R interface for Apache Impala: dplyr provides a grammar of data manipulation, consisting of set of verbs (including mutate(), select(), filter(), summarise(), and arrange()) that can be used together to perform common data manipulation tasks. The implyr package helps dplyr translate this grammar into Impala-compatible SQL commands. This gives R users access to Impala’s scale and speed […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

Categories

July 2017
MTWTFSS
« Jun  
 12
3456789
10111213141516
17181920212223
24252627282930
31