Using bsts In R

Steven L. Scott explains what the bsts package does:

Time series data appear in a surprising number of applications, ranging from business, to the physical and social sciences, to health, medicine, and engineering. Forecasting (e.g. next month’s sales) is common in problems involving time series data, but explanatory models (e.g. finding drivers of sales) are also important. Time series data are having something of a moment in the tech blogs right now, with Facebook announcing their “Prophet” system for time series forecasting (Taylor and Letham 2017), and Google posting about its forecasting system in this blog (Tassone and Rohani 2017).

This post summarizes the bsts R package, a tool for fitting Bayesian structural time series models. These are a widely useful class of time series models, known in various literatures as “structural time series,” “state space models,” “Kalman filter models,” and “dynamic linear models,” among others. Though the models need not be fit using Bayesian methods, they have a Bayesian flavor and the bsts package was built to use Bayesian posterior sampling.

If you’re looking for time series models, this looks like a good one.

Related Posts

R Services Internals

Niels Berglund has an excellent series on R Services internals.  Here’s the latest post: This post is the ninth post about Microsoft SQL Server R Services, and the eight post that drills down into the internal of how it works. So far in this series we have been looking at what happens in SQL Server […]

Read More

Multiple Data Sets In External Scripts

Tomaz Kastrun shows a workaround to the “one data set” limit in sp_execute_external_script: Some of the  arguments of the procedure sp_execute_external_script are enumerated. This is valid for the inputting dataset and as the name of argument @input_data_1 suggests, one can easily (and this is valid doubt) think, there can also be @input_data_2 argument, and so on. Unfortunately, this is […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *


July 2017
« Jun