Useful dplyr Functions

S. Richter-Walsh explains seven important dplyr functions with plenty of examples:

There are many useful functions contained within the dplyr package. This post does not attempt to cover them all but does look at the major functions that are commonly used in data manipulation tasks. These are:

select()
filter()
mutate()
group_by()
summarise()
arrange()
join()

The data used in this post are taken from the UCI Machine Learning Repository and contain census information from 1994 for the USA. The dataset can be used for classification of income class in a machine learning setting and can be obtained here.

That’s probably the bare minimum you should know about dplyr, but knowing just these seven can make data analysis in R much easier.

Related Posts

Random Forests In R

Anish Sing Walia explains the basics of random forests and provides sample code in R: Random Forests are similar to a famous Ensemble technique called Bagging but have a different tweak in it. In Random Forests the idea is to decorrelate the several trees which are generated on the different bootstrapped samples from training Data.And […]

Read More

Using seplyr Instead Of dplyr

John Mount explains seplyr and why it can be better for certain use cases than dplyr: seplyr is a dplyr adapter layer that prefers “slightly clunkier” standard interfaces (or referentially transparent interfaces), which are actually very powerful and can be used to some advantage. The above description and comparisons can come off as needlessly broad and painfully abstract. Things are […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

Categories

July 2017
MTWTFSS
« Jun  
 12
3456789
10111213141516
17181920212223
24252627282930
31