Measuring Model Accuracy

Fabio Veronesi shows several methods of testing model accuracy:

Mean Squared Deviation or Mean Squared Error

This is simply the numerator of the previous equation, but it is not used often. The issue with both the RMSE and the MSE is that since they square the residuals they tend to be more affected by large residuals. This means that even if our model explains the large majority of the variation in the data very well, with few exceptions; these exceptions will inflate the value of RMSE.

Click through for several calculations.  H/T R-bloggers

Related Posts

Random Forests In R

Anish Sing Walia explains the basics of random forests and provides sample code in R: Random Forests are similar to a famous Ensemble technique called Bagging but have a different tweak in it. In Random Forests the idea is to decorrelate the several trees which are generated on the different bootstrapped samples from training Data.And […]

Read More

Neural Networks From Scratch

Ilia Karmanov explains neural nets and shows how to build one in R: Hence, my motivation for this post is two-fold: Understanding (by writing from scratch) the leaky abstractions behind neural-networks dramatically shifted my focus to elements whose importance I initially overlooked. If my model is not learning I have a better idea of what […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

Categories

July 2017
MTWTFSS
« Jun  
 12
3456789
10111213141516
17181920212223
24252627282930
31