Data Science Resources

Steph Locke has some resources if you are interested in getting started with data science:

R for Data Science: Import, Tidy, Transform, Visualize, and Model Data is written by Hadley Wickham and Garett Grolemund. You can buy it and you can also access it online.

If you’re interested in learning to actually start doing data science as a practitioner, this book is a very accessible introduction to programming.

Starting gently, this book doesn’t teach you much about the use of R from a general programming perspective. It takes a very task oriented approach and teaches you R as you go along.

This book doesn’t cover the breadth and depth of data science in R, but it gives you a strong foundation in the coding skills you need and gives you a sense of the of the process you’ll go through.

It’s a good starting set of links.

Related Posts

Neural Networks From Scratch

Ilia Karmanov explains neural nets and shows how to build one in R: Hence, my motivation for this post is two-fold: Understanding (by writing from scratch) the leaky abstractions behind neural-networks dramatically shifted my focus to elements whose importance I initially overlooked. If my model is not learning I have a better idea of what […]

Read More

Using bsts In R

Steven L. Scott explains what the bsts package does: Time series data appear in a surprising number of applications, ranging from business, to the physical and social sciences, to health, medicine, and engineering. Forecasting (e.g. next month’s sales) is common in problems involving time series data, but explanatory models (e.g. finding drivers of sales) are […]

Read More

Categories