# The Birthday Problem

2017-04-26

Given a room of 23 random people, what are chances that two or more of them have the same birthday?

This problem is a little different from the earlier ones, where we actually knew what the probability in each situation was.

What are chances that two people do NOT share the same birthday? Let us exclude leap years for now..chances that two people do not share the same birthday is 364/365, since one person’s birthday is already a given. In a group of 23 people, there are 253 possible pairs (23*22)/2. So the chances of no two people sharing a birthday is 364/365 multiplied 253 times. The chances of two people sharing a birthday, then, per basics of probability, is 1 – this.

The funny thing for me is that I’ve had the Birthday problem explained three separate times using as a demo the 20-30 people in the classroom.  In none of those three cases was there a match, so although I understand that it is correct and how it is correct, the 100% failure to replicate led a little nagging voice in the back of my mind to discount it.

## Bayesian Average

2017-06-21

Jelte Hoekstra has a fun post applying the Bayesian average to board game ratings: Maybe you want to explore the best boardgames but instead you find the top 100 filled with 10/10 scores. Experience many such false positives and you will lose faith in the rating system. Let’s be clear this isn’t exactly incidental either: […]

## Calculating Relative Risk In T-SQL

2017-06-20

Mala Mahadevan explains how to calculate relative risk using T-SQL: In this post we will explore a common statistical term – Relative Risk, otherwise called Risk Factor. Relative Risk is a term that is important to understand when you are doing comparative studies of two groups that are different in some specific way. The most […]