Understanding The Problem: Churn Edition

Emre Yazici points out the importance and difficulty of nailing down good definitions, using bookings churn as an example:

WHEN: Let’s say, we have made our design, constructed a model and obtained a good accuracy. However our model predicts (even with 95% accuracy) the customer who are going to churn in next day! That means our business department have to prevent (somehow, as explained before) those customers to churn in “one day”. Because next day, they will not be our customers. Taking an action to “3000” customers (let’s say) in one day only is impossible. So even our project predicts with very high accuracy, it will not be usefull. This approach also creates another problem: Consider that N months ago, a customer “A” was a happy customer and was working (providing us) with us (let’s say, it is a customer with %100 efficiency – happiness) and tomorrow it will be a customer who is not working with us (a customer with %100 efficiency – happiness). And we can predict the result today. So most probably, the customer has already got the idea to leave from our company in the last day. This is a deadend and we can not prevent the customer to churn at this point – because it is already too late.

So we need to have a certain time limit… Such that we need to be able to warn the business department “M months” before (customer churn) thus they can take action before the customers leave. Here comes another problem, what is the time limit… 2 months, 2.5 months, 3 months…? How do we determine the time, that we need to predict customers churn before (they leave)?

There’s a lot more to a good solution than “I ran a regression against a data set.”

Related Posts

Neural Nets On Spark

Nisha Muktewar and Seth Hendrickson show how to use Deeplearning4j to build deep learning models on Hadoop and Spark: Modern convolutional networks can have several hundred million parameters. One of the top-performing neural networks in the Large Scale Visual Recognition Challenge (also known as “ImageNet”), has 140 million parameters to train! These networks not only […]

Read More

Linear Prediction Confidence Region Flare-Out

John Cook explains why the confidence region of a tracked object flares out instead of looking conical (or some other shape): Suppose you’re tracking some object based on its initial position x0 and initial velocity v0. The initial position and initial velocity are estimated from normal distributions with standard deviations σx and σv. (To keep […]

Read More


April 2017
« Mar May »